THE PROBLEM
Overview

• History and Mechanism of Injury
• Unstable v. Stable
• Evaluation of Extremity and Pelvis Trauma
• Principles of Immobilization
• Priority Situations
History

- Mechanism
- Time since injury
- Blunt versus penetrating
- Crush
- Hemodynamic instability
- Entrapment
Hemodynamic Stability

- Signs and Symptoms?
 - Blood pressure
 - Heart rate
 - Hemorrhage
 - Pallor
Unstable

- Airway
- Bleeding
- C-spine stabilization
- Rapid Evaluation
 - Long bone injury
 - Open fractures
 - Perfusion
 - Pelvis
- Load and Go
 - Trauma capable facility
Stable Patients

- ABC’s still apply
- More detailed assessment
- Transport decision may change
- May begin treatment
Physical Exam: Pelvis

- Pelvis
- Skin
- Stability
- Neurological
Physical Exam: Pelvis

- Pelvis
 - Skin
 - Stability
 - Neurological
Physical Exam: Extremity

- Extremity
 - Palpation
 - Deformity
 - Extremity Inventory
 - Perfusion
 - Skin
 - Muscle
 - Nerve
 - Bone
Perfusion

- Pulses
- Cap refill/color
- Doppler
- Grossly realign extremity
Assessing NV Status
Ischemic Limbs

- 4-6 hour warm ischemia limit
- Time line for decision making is constricted
Skin

- Open wounds
- Contusions
- Degloving
- Abrasion
- Loss
Muscle

- Loss
- Viability
- Contamination
- Indirect injury
 - Avulsion
 - Crush
 - Ischemia
Nerve

- Indirect evidence of injury
 - Motor
 - Sensation
 - Ischemia confounds exam
 - Document exam
 - Predictor of ultimate outcome?
Bone

- Fracture/Dislocation
- Bone loss
- Articular injury
The ultimate viability of some tissues may not be predictable.
Communication

- **Know the language**
Anatomy

- Bony Skeleton
- Muscle
- Cartilage
- Joint Capsule
- Ligaments
Long Bone Anatomy

- Epiphysis
- Physis
- Metaphysis
- Diaphysis
Upper Extremities

- Shoulder
 - Clavicle
 - Scapula (Glenoid Fossa)
 - Humerus
- Humerus (arm or brachium)
- Radius and Ulna (forearm or antebrachium)
- Hand and Wrist (carpal bones, metacarpals, phalanges)
Pelvis

- Sacrum + Ilium/Ischium/Pubis
- SI joints posteriorly
- Symphysis pubis anteriorly
- Adjacent neurovascular structures
Lower Extremities

- Thigh/ Femur
- Leg/ Tibia + Fibula
- Ankle - Tibio-Talar Joint
- Hindfoot - Talus + Calcaneus
- Midfoot - Tarsals + Metatarsals
- Forefoot - Metatarsals + Phalanges
Joint Injuries

- Sprains
- Subluxations
- Dislocations
Fractures

- Open v. Closed
- Displaced v. Non-Displaced
- Ability to bear weight?
- Associated injuries to soft tissue
 - Muscle & tendon injury as important
Treatment Principles

- Beware of associated local injury
- Distracting pain
- Don’t miss additional injuries
Pelvis

- Assess stability
- Treat shock if appropriate
- Stabilize ?
 - Sheet
 - Binder
- Transport to trauma center
Pelvic Binder
Hip Fractures

• Typical presentation
 • Fall from standing
 • Leg shortened/rotated
• Usually low energy
• Usually elderly patient
 • May tolerate less blood loss
 • May have co-morbidities
 • Trauma center?
Femur Shaft Fractures

- Typically high-energy
- Often significant muscle damage
- Beware of multi-system injury
 - Distracting pain
- Traction splint for stable patients
Knee Dislocations

• Distinct from patellar dislocation
• High-energy injury
• 30-50% incidence of associated vascular injury
• Always warrant trauma center referral
Knee Injuries

- Patella
- Patellar tendon
- Quad tendon
- Cruciate ligament injury
Knee Injuries

- Patella
- Patellar tendon
- Quad tendon
- Cruciate ligament injury
Knee Injuries

- Patella
- Patellar tendon
- Quad tendon
- Cruciate ligament injury
Tibia Fractures

- Often open
 - Limited soft tissue envelope
 - NV injury frequent
- Cover open wounds
- Do not explore wounds
- Splint appropriately
- Transport to definitive care center
- Evaluate for compartment syndrome
Foot and Ankle Injuries

- Fractures/Dislocations/Open Injuries
- Assess NV status as appropriate
- Splint
- Appropriate dressings
Foot & Ankle Treatment
Shoulder Injuries

- Dislocations
- Fractures
Shoulder Injuries - Treatment
Humerus Fractures

- Be aware of associated injuries
- Chest injuries common
- Radial nerve injuries common
- Immobilize to chest
Humerus Fractures - Treatment

- Immobilize joint above and below
- Check pulse/motor before and after splinting
- Dress any open wounds
Elbow Injuries

- Fractures
- Dislocations
- Open injuries
- Pediatric injuries (common)
Treatment of Elbow Injuries
Fractures of the Forearm & Wrist

- Common in children & elderly
- Neurovascular injury common
- Common deformity patterns
Treatment of Forearm Injuries

• Splint joint above & below
• Dress open wounds
• Check NV status before & after splint
Priority Situations

- Pelvis fractures
- Open fractures
- Hip dislocations
- Knee dislocations
- Compartment syndrome
- Pulseless or ischemic limbs
- Amputations
Amputations

- **Fingers**
 - Wrap in saline moistened gauze
 - Keep on ice but don’t freeze
 - Trauma center or hand center

- **Other**
 - Hand?
 - Arm?
Hip Dislocation

- Usually posterior
- Position of modesty
- Commonly has acetabular fracture and or sciatic nerve injury
- Needs
 - Urgent reduction
 - May need repair of fx
Compartment Syndrome

• Definition

 Increased pressure within a closed space which leads to decreased tissue perfusion
Compartment Syndrome

- Lower Extremity
 - Gluteal
 - Thigh
 - Lower leg
 - Foot

- Upper Extremity
 - Deltoid
 - Arm
 - Forearm
 - Hand
Compartment Syndrome

When Does it occur?

• Risk factors - History
 – Crush injury
 – Entrapment
 – Ischaemia
 – Shock / Hypotension
 – Overdose / Unconsciousness
Compartment Syndrome

- **Risk factors - Injury**
 - Tibia fractures (open and closed)
 - Ipsilateral tibia and femur fracture
 - Distal humerus fractures
 - Forearm fractures (GSW)
 - Arterial injury
 - Venous injury

- **Risk factors - Associated conditions**
 - Coagulopathy
 - Shock
 - Ischaemia
 - DVT

- **Risk factors - Treatment**
 - Fluid administration
 - Tourniquets
 - Positioning
 - MAST
 - Dressings
Compartment Syndrome

• Clinical diagnosis
 – Pain out of proportion to the injury
 – Numbness / Paresthesias
 – Weakness
Compartment Syndrome

- Physical Exam
 - Firm compartments?
 - Loss of pulses?
 - Pain on passive stretch

- Compartment Pressure?
Compartment Syndrome

- Who do we measure?
 - Risk factors but minimal signs/symptoms
 - Altered level of consciousness
 - Altered sensation
 - Nerve injury
 - Anesthesia
 - When diagnosis is in question
Compartment Syndrome

• How do we treat it?
 – Immediate fasciotomy
 • Skin
 • Muscle fascia
 • Debridement of necrotic tissue if present
Compartment Syndrome

- **Immediate fasciotomy**
 - **Lower Leg**
 - Two incisions
 - Release all four compartments
 - Skin can also be a limiting factor
Compartment Syndrome

Summary
- High index of suspicion
- Clinical diagnosis
- Prompt fasciotomy
- Treat complications
Summary

• History and mechanism of injury
• Unstable v. Stable
• Evaluation and effective communication of information
• Principles of immobilization
• Priority situations
Questions?